

Installation Instructions for: EMS P/N 30-1060

96-99 Acura Integra / 97 Acura 2.2CL / 96-97 Honda Accord / 96-98 Honda Civic / 96-97 Honda Del Sol / 96-01 Honda Prelude

WARNING:

This installation is not for the tuning novice nor the PC illiterate! Use this system with <u>EXTREME</u> caution! The AEM EMS System allows for total flexibility in engine tuning. Misuse of this product can destroy your engine! If you are not well versed in engine dynamics and the tuning of management systems or are not PC literate, please do not attempt the installation. Refer the installation to a AEM trained tuning shop or call 800-423-0046 for technical assistance. You should also visit the AEM EMS Tech Forum at http://www.aempower.com

NOTE: AEM holds no responsibility for any engine damage that results from the misuse of this product!

This product is legal in California for racing vehicles only and should never be used on public highways.

ADVANCED ENGINE MANAGEMENT INC. 2205 126th Street Unit A Hawthorne, CA. 90250 Phone: (310) 484-2322 Fax: (310) 484-0152 Http://www.aempower.com Instruction Part Number: 10-1060 © 2004 Advanced Engine Management, Inc. Congratulations! You have just purchased the finest Engine Management System for your vehicle at any price.

The AEM Engine Management System (EMS) is the result of extensive development on a wide variety of vehicles. Each system is engineered for a particular application. The AEM EMS differs from all others in several ways. The EMS is a "stand-alone", which completely replaces the factory ECU and features unique plug and play technology. There is no need to modify the factory wiring harness and in most cases the vehicle may be returned to stock in a matter of minutes. The AEMPro software is configured to work with the factory sensors and equipment, so there is no need for expensive or hard to find sensors, making replacements and repairs as simple as with any stock vehicle. For stock and slightly modified vehicles, the AEMPro software can be programmed with base parameters, providing a solid starting point for beginner tuning. For more heavily modified cars, the EMS has many spare inputs and outputs allowing the elimination of add-on rev-limiters, boost controllers, nitrous controllers, fuel computers, etc. It will also allow programmable control over all automatic transmission functions, and includes a configurable onboard data logger capable of recording 512kb of information. Every EMS comes with all functions installed and activated and there are no options or upgrades to be purchased.

Please visit the AEM EMS Forum at http://www.aempower.com to register the system before beginning. Make sure to enter the serial number found on the back of the EMS as doing this grants access to the calibration files. AEM always posts the most current software and base maps online. The forum also has many helpful hints/tips to make the EMS perform its best.

While the base map may be a good starting point and will save considerable time and money, it will not replace the need to tune the specific application. AEM start-up maps are tuned conservatively and are not intended to be driven aggressively. Ignoring this can and will damage your engine.

If the 30-1060U EMS was purchased, the stock O2 #1 sensor will not be used and should be replaced with the supplied AEM sensor. The 30-1060U furnishes the user with real time, accurate and repeatable air/fuel ratios. The system consists of an internal air fuel ratio (AFR) controller, wiring harness, wide band oxygen sensor and a sensor bung.

The heart of the AEM wideband controller is the Bosch LSU4.2 Universal Exhaust Gas Oxygen (UEGO) sensor. This type of sensor is commonly referred to as "laboratory grade" and works on a different principle than the normal oxygen sensor found in most vehicles. Its unique design makes precision AFR measurements possible over the entire operating range. UEGO type sensors use a "current pump" within the sensor itself to determine the actual oxygen concentration within the sensing element or, lacking any oxygen, it determines the amount of oxygen required to regain stoichiometric operation. The output is in the form of a very small current, which varies depending on the air-fuel ratio. This is completely different from normal oxygen sensors (1, 2, and 4 wire types), which directly output a voltage.

Each AEM UEGO sensor is individually calibrated using a laser trimmed resistor integral found on the connector body. This process replaces the traditional "free air" calibration procedure when changing sensors and implements a sensor specific calibration for unparalleled accuracy.

Read and understand these instructions <u>BEFORE</u> attempting to install this product.

1) Removing the Stock Engine Control Unit

- a) Access the stock Engine Control Unit (ECU). The location of the ECU on the OBDII Hondas is behind the passenger side kick panel.
- b) Disconnect the wiring harness from the ECU. Avoid excessive stress or pulling on the wires, as this may damage the wiring harness. There may be more than one connector, and they must all be removed without damage to work properly with the AEM ECU. Do not cut any of the wires in the factory wiring harness!
- c) Remove the fasteners securing the ECU to the car body, and set them aside. Do not destroy or discard the factory ECU, as it can be reinstalled easily for street use and troubleshooting.

2) Installing and Routing the UEGO Sensor (30-1060U Only)

- a) Remove the forward O2 sensor and replace it with the supplied UEGO sensor.
- b) Connect the sensor and route the wire through the firewall to the EMS being careful in staying away from heat and the suspension.

3) Installing the AEM Engine Management System.

- a) Plug the factory wiring harness into the AEM EMS and position it so the wires are not stressed in any manner. Secure the EMS with the provided Velcro fasteners.
- b) Plug the comms cable into the EMS and into the PC (not supplied).
- c) Install the supplied AEM CD and open the AEMPro software.
- d) Turn the ignition "on" but do not attempt to start the engine.
- e) Go to: "*ECU* | *Send New Calibration*". Upload the base calibration file (.cal) that most closely matches the vehicle's configuration to be tuned. Full details of the test vehicle used to generate each map can be found in the "Notes" section in the "*Setup*" window of the AEMPro software. The base maps can be found in the Mitsubishi-DSM folder located in: "*My Computer* | *Local Disk (C:)* | *Program Files* | *AEM* | *AEMPro* | *Startup Calibrations*"
- f) Set the throttle range: Select the "*Configure*" drop down menu, then "*ECU Setup* | *Set Throttle Range*" and then follow the instructions given on the screen.
- g) Verify the ignition timing: Select the "*Configure*" drop down menu, then "*ECU Setup* | *Set Ignition*". Use a timing light and compare the physical engine timing to the parameter "*Ignition Timing*" displayed. Use the "*Advance/Retard*" buttons to make the timing number match. After this is complete, you MUST verify that the ignition timing matches across the entire RPM range. If it does not then you must STOP and call the EMS tech support line for further setup help. Do not run the engine until this problem is corrected.
- h) Calibrate the lambda sensor channel: With the ignition "on" and the sensor unplugged, change the "O2 #1 Gain" ("Setup | Sensors | Oxygen Sensor | Oxygen Sensor #1 | Options O2 Sensor #1") until the "O2 #1 Volts" parameter displays 3.94 Volts (+/- 0.02 Volts). This should yield an "O2 #1 Gain" near 1.28. If using the non-UEGO 30-1060, the "O2 #1 Gain" should be near 1.0.
- i) Set the appropriate UEGO calibration (30-1060U Only): Enter the calibration on page 8 of this manual into *Setup* | *Sensors* | *Oxygen Sensors* | *Oxygen Sensor #1* | *O2 Sensor #1 Cal Table*. Note, this is different than that used for the external AEM UEGO sensor or the Gauge type UEGO controller.

4) Ready to begin tuning the vehicle.

a) Note: This calibration needs to be properly tuned and is not recommended for street use. **NEVER TUNE THE VEHICLE WHILE DRIVING.**

Application Notes for EMS P/N 30-1060 & 1060U 96-99 Integra, 97 2.2CL, 96-97 Accord. 96-98 Civic, 96-97 Del Sol, 96-01 Prelude

		,	
Make:	Acura/Honda		Spare
Model:	See Above		Spare
Years Covered:	See Above		Spare
Engine Displacement:	1.6-2.3L		Spare
Engine Configuration:	Inline 4		Spare
Firing Order:	1-3-4-2		Spare
N/A, S/C or T/C:	N/A		Spare
Load Sensor Type:	MAP		Spare
Map Min:	0.32V @ -13.9 PSI		Spare
Map Max:	4.84V @ 10.94 PSI		Spare
# Coils:	1		Boost
Ignition driver type:	0-5V Low Switch High		EGT #
How to hook up MSD:	Wire after Igniter		EGT #
# Injectors:	4 (Inj 1-4)		EGT #
Factory Injectors:	* 190-290cc Saturated		EGT #
Factory Inj Resistors:	** No		Spare
Injection Mode:	Sequential		Spare
Knock Sensors used:	1		Spare
Lambda Sensors used:	2		Spare
Idle Motor Type:	PW (Rotary for D16Y7)		Spare
Main Relay Control:	No		Spare
Crank Pickup Type:	Mag		Spare
Crank Teeth/Cycle:	24		Spare
Cam Pickup Type:	Mag		Spare
Cam Teeth/Cycle:	1		Spare
Transmissions Offered:	M/T, A/T		Spare
Trans Supported:	M/T Only		Check
Drive Options:	FWD		Spare
Supplied Connectors:	Plug B with Connectors		Spare
			A/C Sv

Spare Injector Drivers:	Inj #5, Pin C19
Spare Injector Drivers:	Inj #6, Pin B21
Spare Injector Drivers:	Inj #7, Pin A19/C9
Spare Injector Drivers:	Inj #9, Pin A32
Spare Injector Drivers:	Inj #10, Pin B6/C23
Spare Injector Drivers:	
Spare Coil Drivers:	Coil #2, Pin B7
Spare Coil Drivers:	Coil #3, Pin B9
Spare Coil Drivers:	Coil #4, Pin B10
Spare Coil Drivers:	Coil #5, Pin B19
Boost Solenoid:	PW #2, Pin C31
EGT #1 Location:	Pin B25
EGT #2 Location:	Pin A31
EGT #3 Location:	Pin C17
EGT #4 Location:	Pin D16
Spare 0-5V Channels:	ADR03, Pin D15
Spare 0-5V Channels:	ADR11, Pin D9
Spare 0-5V Channels:	ADR13, Pin B8
Spare 0-5V Channels:	
Spare Low Side Driver:	Low Side #7, Pin C26
Spare Low Side Driver:	Low Side #9, Pin B20
Spare Low Side Driver:	Idle #2, Pin B4
Spare Low Side Driver:	Idle #6, Pin B2
Spare Low Side Driver:	Idle #8, Pin B12
Spare Low Side Driver:	
Spare Low Side Driver:	
Check Engine Light:	Low Side #10, Pin A18
Spare High Side Driver:	Idle #5, Pin B1
Spare High Side Driver:	High Side #4, Pin B3
Spare Switch Input:	Switch #2, Pin B15
Spare Switch Input:	Switch #3, Pin B23
Spare Switch Input:	Switch #5, Pin C16
A/C Switch Input:	Switch #6, Pin C5

Notes:

* Honda Accord and Acura 2.2CL uses low impedance peak and hold injectors

** Honda Accord and Acura 2.2 CL uses an injector resistor box

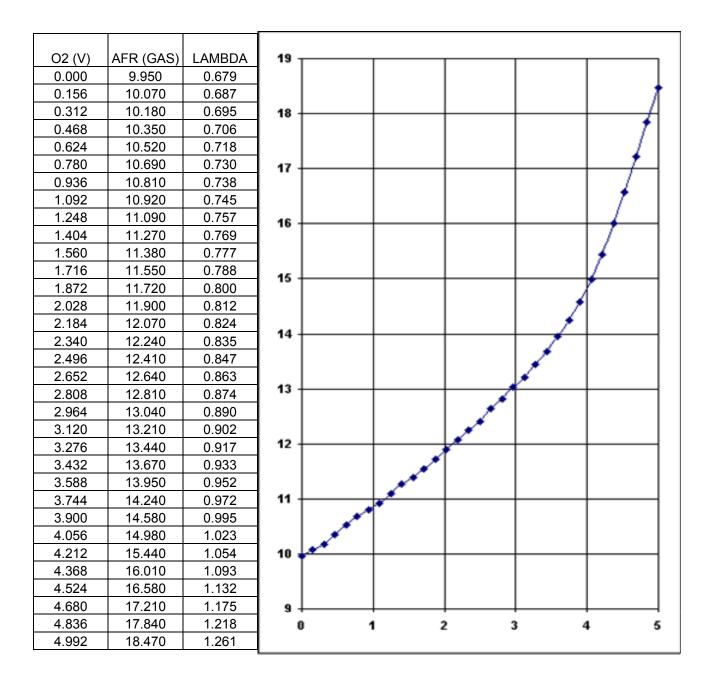

*** Does not apply to vehicles equipped with an intake air bypass (IAB) solenoid for the intake manifold.

Connection Diagram for EMS P/N 30-1060, 1060U

Pin #	Factory ECU	AEM PEMS P/N 30-1060	I/O	Availability	
A1	Injector 4	Injector #4	Output	PnP for Injector 4	
A2	Injector 3	Injector #3	Output		
A3	Injector 2	Injector #2	Output	PnP for Injector 2	
A4	Injector 1	Injector #1	Output	PnP for Injector 1	
A5	Secondary 02 Heater Control	Low Side Driver #12	Output	PnP for Secondary O2 Heater	
A6	Primary 02 Heater Control	Low Side Driver #2	Output	PnP for Primary O2 Heater	
A7	EGR Control Solenoid Valve	High Side Driver #2	Output	Avail, +12V, 1.5A max	
A 8	VTEC Solenoid Valve	High Side Driver #1	Output	PnP for VTEC Solenoid	
A9	Power Ground	Power Ground	Output	Dedicated	
A10	Power Ground	Power Ground	Output	Dedicated	
A11	Power Source 1	+12V Switched	Input	Dedicated	
A12	Idle Air Control Valve (IACV)	PW #1	Output	PnP for Idle Air Control	
A13	IACV N (D16Y7 Only)	PW #1i		PnP for Idle Air Control (Rotary Type)	
A14	IACV P (D16Y7 Only)	PW #1		PnP for Idle Air Control (Rotary Type)	
A15	EVAP Purge Control Solenoid	Low Side Driver #4	Output		
A16	Fuel Pump Relay	Low Side Driver #11	Output		
A17	A/C Clutch Switch	Low Side Driver #6	Output		
A18	Malfunction Indicator Light	Low Side Driver #10	Output	Avail, Switched Gnd, 1.5A Max	
A19	Alternator Control				
A20	Ignition Control Module	Coil #1	Output	PnP for Ignition Control Module	
A21		Knock #2	Input	Avail, Knock Input	
A22	Power Ground	Power Ground	Output		
A23	Power Ground 2	Power Ground	Input	Dedicated	
A24	Power Source 2	+12V Switched	Input	Dedicated	
A25					
A26	Intake Air Bypass Solenoid	High Side Driver #3	Output	Avail, +12V, 1.5A max	
A27	Radiator Fan Control	Low Side Driver #8	Output		
A28	EVAP Bypass Solenoid Valve	Low Side Driver #3	Output		
A29	EVAP Control Canister Vent Shut	Low Side Driver #5	Output	Avail, Switched Gnd, 1.5A Max	
A30	Shift Up Indicator	Low Side Driver #1	Output	Avail, Switched Gnd, 1.5A Max	
A31		EGT #2	Input	Avail, RTD Temp	
A32		Injector #9	Output	Avail, Injector Gnd, 1.5A Max	
B1		Idle #5	Output	Avail +12V, 1.5A max	
B2		Idle #6	Output		
B3		High Side Driver #4	Output		
B4		Idle #2	Output		
B5					
B6		Injector #10	Output	Avail, Injector Gnd, 1.5A Max	
B7		Coil #2	Output	Avail, Switched Gnd, 1.5A Max	
B8		ADCR 13	Input	Avail, 0-5 Volt Input, 100k Pull Up	
B9		Coil #3	Output	Avail, Switched Gnd, 1.5A Max	
B10		Coil #4	Output	Avail, Switched Gnd, 1.5A Max	
B11		Idle #2	Output	Avail Switched Ground, 1.5A max	
B12		Idle #8	Output	Avail Switched Ground, 1.5A max	

B13		FM	Output	Avail, +/- 5V	
B14		AGND	Output	Avail, Analog Ground	
B15		Switch #2	Input	Avail, Switched Input	
B16		Injector #7	Output	•	
B17		Vcc (+5 volt)	Output		
B18					
B19		Coil #5	Output	Avail, Switched Gnd, 1.5A Max	
B20		Low Side Driver #9	Output	Avail, Switched Gnd, 1.5A Max	
B21		Injector #6	Output	Avail, Injector Gnd, 1.5A Max	
B22		AGND	Output	Avail, Analog Ground	
B23		Switch #3	Input	Avail, Switched Input	
B24		Injector #8	Output	Avail, Injector Gnd, 1.5A Max	
B25		EGT #1	Input	Avail, RTD Temp	
C1					
C2	CKP +	Crank Sensor	Input	Dedicated	
C3	TDC +	Spare Speed	Input	Dedicated	
C4	CYP +	Cam Sensor	Input	Dedicated	
C5	A/C Switch Signal	Switch #6	Input	PnP for A/C Switch Signal	
C6	Starter Switch Signal	+12V Switched	Input	Dedicated	
C7	Service Check Connector				
C8	K-Line				
C9	Feedback at Signal	Injector #7	Output	Available	
C10	Voltage Back Up	Permanent +12V	Input	Dedicated	
C11	Crank Fluctuation Sensor -	Timing Ground	Output	Available, Speed Sensor Ground	
C12	CKP -	Timing Ground	Output	Dedicated	
C13	TDC -	Timing Ground	Output	Dedicated	
C14	CYP -	Timing Ground	Output	Dedicated	
C15	VTEC Pressure Switch	Switch #4	Input	Avail, Switched Input	
C16	P/S Oil Pressure Switch	Switch #5	Input	Avail, Switched Input	
C17	Alternator FR Signal	EGT #3	Output	Avail, RTD Temp	
C18	Vehicle Speed Sensor	Vehicle Speed	Input	PnP Vehicle Speed Sensor	
C19		Injector #5	Output	Avail, Injector Gnd, 1.5A Max	
C20	EVAP Purge Flow Switch	ADR14	Input	Avail, 0-5 Volt Input, 100k Pull Up	
C21		Idle #3	Output		
C22	Immobilizer Code	Idle #7	Output		
C23		Injector #10i	Output	Avail, same as pin B6	
C24		Injector #9i	Output	Avail, same as pin A32	
C25		Idle #1	Output		
C26		Tacho Output (LS#7)	Output		
C27					
C28					
C29					
C30	ATTS Transmit (Prelude SH Only)	PW #2i	Output	Avail, Pulse Width Out, Inverted C31	
C31	ATTS Receive (Prelude SH Only)	PW #2	Output	Avail, PW Out for Boost Solenoids	
D1	Throttle Position Sensor	TPS	Input	Dedicated	
D2	Engine Coolant Temp Sensor	Coolant	Input	Dedicated	
D3	MAP Sensor	MAP	Input	Dedicated	
D4	Sensor Voltage 1	+5V Sensor	Output	Dedicated	
D5	Brake Switch	Switch #1	Input	Dedicated	
D6	Knock Sensor	Knock #1	Input	PnP for Knock Sensor	
D7	Primary 02 Sensor	Lambda #1	Input	PnP for Primary O2 Sensor	

D8	Intake Air Temp Sensor	AIT	Input	Dedicated
D9	EGR Valve Lift Sensor	ADR11	Input	Avail, 0-5 Volt Input, 100k Pull Up
D10	Sensor Voltage 2	+5V Sensor	Output	Dedicated
D11	Sensor Ground 2	Sensor Ground	Output	Dedicated
D12	Sensor Ground 1	Sensor Ground	Output	Dedicated
D13	Secondary 02 Sensor Ground	Sensor Ground	Output	Dedicated
D14	Secondary 02 Sensor	Lambda #2	Input	PnP for Secondary O2 Sensor
D15	Fuel Tank Pressure Sensor	ADR03	Input	Avail, 0-5 Volt Input, 100k Pull Up
D16	Electronic Load Detector	EGT #4	Input	Avail, RTD Temp



Connector A

Connector B

Connector C

Oxygen Sensor #1 Calibrations (30-1060U ONLY)

Calculating the Air Fuel Ratio of common fuels from the Lambda value

Gasoline AFR = Lambda * 14.65 Methanol AFR = Lambda * 6.47 Diesel AFR = Lambda * 14.5 Propane AFR = Lambda * 15.7 Ethanol AFR = Lambda * 9.00 CNG AFR = Lambda * 14.5

or controller/sensor specifications (so-roodd only)				
9 to 18 Volts				
0.75 to 1.22 Lambda				
Bosch UEGO LSU4.2				
+/- 1%				
930C				
Less than 20 seconds				
80 grams				
1.1A at 12.0V				
M18 X 1.5 thread, Torque to 30 ft-lbs				
100,000 km for Unleaded Fuel				
60,000 km for Leaded Fuel 0.15g Pb/l				
30,000 km for Leaded Fuel 0.40g Pb/l				
20,000 km for Leaded Fuel 0.60g Pb/l				

UEGO Controller/Sensor Specifications (30-1060U Only)

Notes:

The sensor should not be subject to mechanical or thermal shock or it may be damaged. The sensor is not designed for operation on leaded fuels, doing so will dramatically shorten sensor life.

Long term running in the rich region (Lambda < 0.95) will shorten sensor life. High exhaust temperatures (over 850C) will shorten sensor life.

Engine oil usage at a rate greater than 1 quart per 1,000 miles will shorten sensor life. Do not run the engine with the UEGO sensor installed without power applied to the controller and the sensor plugged in.

Replacement Oxygen Sensor Components (30-1050U Only)

- 30-2001 Replacement UEGO Sensor
- 35-4005 O2 Sensor Bung, mild steel, welding required
- 35-4001 O2 Sensor Plug, mild steel